Heliyon (Sep 2024)
Snhg14/miR-181a-5p axis-mediated “M1” macrophages aggravate LPS-induced myocardial cell injury
Abstract
An increasing number of studies have suggested that macrophages participate in sepsis-induced myocardial injury. Our study highlights the function and mechanism of the lncRNA Snhg14 in “M1” polarized macrophage-mediated myocardial cell damage. Lipopolysaccharide (LPS) was used to treat H9c2 cells to construct an in vitro myocardial injury model. M1 and M2 polarization of RAW264.7 cells were induced and the exosomes were obtained from the supernatant through ultracentrifugation. Moreover, cecal ligation and puncture (CLP) surgery was implemented to establish a mouse sepsis-induced myocardial injury model, and Snhg14 was knocked down with sh-Snhg14. The results showed that the conditioned medium (CM) and the exosomes (Exo) of M1 macrophages substantially augmented LPS-induced apoptosis and oxidative stress in myocardial cells. Notably, M1-CM and M1-Exo contributed to nearly 50 % of myocardial cell viability decline. Snhg14 was highly expressed in M1 macrophages and exosomes derived from M1-MΦ (M1-Exo). Snhg14 overexpression aggravated myocardial cell damage and increased 10 to 50 times expression of proinflammatory cytokines in MΦ. Snhg14 knockdown reversed M1-Exo-mediated myocardial cell damage and inhibited the production of proinflammatory cytokines (50 %–75 % decline) of MΦ. Moreover, Snhg14 targeted and inhibited miR-181a-5p expression. miR-181a-5p upregulation partly reversed Snhg4 overexpression-mediated myocardial cell damage and MΦ activation. In vivo, sh-Snhg14 dramatically ameliorated cardiac damage in septic mice by enhancing miR-181a-5p and inhibiting the HMGB1/NF-κB pathway. In conclusion, “M1” macrophage-derived exosomal Snhg14 aggravates myocardial cell damage by modulating the miR-181a-5p/HMGB1/NF-κB pathway.