Entropy (Mar 2019)

Unsupervised Indoor Positioning System Based on Environmental Signatures

  • Pan Feng,
  • Danyang Qin,
  • Min Zhao,
  • Ruolin Guo,
  • Teklu Merhawit Berhane

DOI
https://doi.org/10.3390/e21030327
Journal volume & issue
Vol. 21, no. 3
p. 327

Abstract

Read online

Mobile sensors are widely used in indoor positioning in recent years, but most methods require cumbersome calibration for precise positioning results, thus the paper proposes a new unsupervised indoor positioning (UIP) without cumbersome calibration. UIP takes advantage of environment features in indoor environments, as some indoor locations have their signatures. UIP considers these signatures as the landmarks, and combines dead reckoning with them in a simultaneous localization and mapping (SLAM) frame to reduce positioning errors and convergence time. The test results prove that the system can achieve accurate indoor positioning, which highlights its prospect as an unconventional method of indoor positioning.

Keywords