Clinical and Experimental Dental Research (Feb 2022)
Improved access to the bone marrow space by multiple perforations of the alveolar bundle bone after tooth extraction—A case report
Abstract
Abstract Objectives The dental alveolus is lined by a thin cortical layer (“bundle bone”, “alveolar bone proper”, “cribriform plate”, “lamina dura”), that can impede access to the bone marrow and its vasculature. During unassisted socket healing, the alveolar bundle bone is gradually resorbed allowing tissue resources from the bone marrow to enter into the socket space. An optimized wound healing process, either during unassisted socket healing or during ridge preservation procedures, with autogenous bone and/or any bone/collagen substitute material, depends at least partly on an adequate vascularization of the socket space. This ensures sufficient recruitment of osteoblast and osteoclast precursor cells and facilitates fast bone regeneration and/or uneventful integration of the augmentation material. Methods The present technical note describes an easy treatment step after tooth extraction aiming to improve socket healing with or without any ridge preservation procedure, by facilitating an increased blood inflow into the dental alveolus. Specifically, after tooth extraction the alveolar bundle bone is perforated several times – mainly in a palatally/lingually – by a small round bur (diameter < 1 mm) extending into the trabecular bone. Results and conclusions By means of this relatively simple treatment step, an increased blood inflow into the alveolus is achieved after tooth extraction, which might enhance socket healing and corticalization of the entrance, and in turn result in a lower complication rate (e.g., dry socket), in an enhanced graft incorporation, and/or in a reduced loss of alveolar ridge volume.
Keywords