Heliyon (Apr 2024)
Exploring the influence of pressure-induced semiconductor-to-metal transition on the physical properties of cubic perovskites FrXCl3 (X = Ge and Sn)
Abstract
Even though lead halide perovskites have outstanding physiochemical properties and improved power conversion efficiency, most of these compounds threaten their future commercialization because of their instability and highly toxic nature. Thus, it is preferable to use stable alternative elements rather than lead to make environmentally friendly perovskite material that will have comparable optical and electronic properties to those constructed from Pb-based perovskites. However, devices constructed from lead-free perovskites typically display a lower power conversion efficiency. Applying hydrostatic pressure could be deemed an effective method to alter the physical properties of these compounds. This not only improves their performance in application but also reveals significant correlations between structure and properties. This work uses DFT to investigate the structural, electronic, optical, and elastic properties of non-toxic, francium-based halide perovskites FrXCl3 (X = Ge, Sn) at different levels of hydrostatic pressures that vary from 0 to 10 GPa. The estimated structural parameter's strong correlation with the data from earlier studies ensures the accuracy of the current findings. Pressure causes the Fr−Cl and Ge (Sn)–Cl bonds to shorten and become stronger. The electronic property calculations demonstrated that both compounds are direct band-gap semiconductors. The application of pressure leads to a linear reduction in the band gap (semiconducting to metallic state) and raises the electronic density of states around the Fermi level by forcing the valence band electrons upward, indicating that the optoelectronic device's performance can be tuned and improved. The values of the dielectric constant, absorptivity and reflectivity showed an increasing tendency with pressure. As the pressure applied to the compounds increases, the absorption spectra show a redshift. These findings suggested that the FrXCl3 (X = Ge and Sn) compound becomes more appropriate for usage in optoelectronic applications under pressure. Furthermore, our examination of the mechanical properties indicates that both FrGeCl3 and FrSnCl3 exhibit mechanically stability, and ductility. Interestingly, we observe an increase in ductility as pressure levels rise.