Agronomy (Sep 2024)
Lightweight Wheat Spike Detection Method Based on Activation and Loss Function Enhancements for YOLOv5s
Abstract
Wheat spike count is one of the critical indicators for assessing the growth and yield of wheat. However, illumination variations, mutual occlusion, and background interference have greatly affected wheat spike detection. A lightweight detection method was proposed based on the YOLOv5s. Initially, the original YOLOv5s was improved by combing the additional small-scale detection layer and integrating the ECA (Efficient Channel Attention) attention mechanism into all C3 modules (YOLOv5s + 4 + ECAC3). After comparing GhostNet, ShuffleNetV2, and MobileNetV3, the GhostNet architecture was finally selected as the optimal lightweight model framework based on its superior performance in various evaluations. Subsequently, the incorporation of five different activation functions into the network led to the identification of the RReLU (Randomized Leaky ReLU) activation function as the most effective in augmenting the network’s performance. Ultimately, the network’s loss function of CIoU (Complete Intersection over Union) was optimized using the EIoU (Efficient Intersection over Union) loss function. Despite a minor reduction of 2.17% in accuracy for the refined YOLOv5s + 4 + ECAC3 + G + RR + E network when compared to the YOLOv5s + 4 + ECAC3, there was a marginal improvement of 0.77% over the original YOLOv5s. Furthermore, the parameter count was diminished by 32% and 28.2% relative to the YOLOv5s + 4 + ECAC3 and YOLOv5s, respectively. The model size was reduced by 28.0% and 20%, and the Giga Floating-point Operations Per Second (GFLOPs) were lowered by 33.2% and 9.5%, respectively, signifying a substantial improvement in the network’s efficiency without significantly compromising accuracy. This study offers a methodological reference for the rapid and accurate detection of agricultural objects through the enhancement of a deep learning network.
Keywords