Journal of Global Antimicrobial Resistance (Dec 2022)

Draft genome sequence of Cronobacter sakazakii strain MEZCS99 sequence type 3 isolated from chicken in South Africa

  • Mohamed E. El Zowalaty,
  • Linda Falgenhauer,
  • Stephen Forsythe

Journal volume & issue
Vol. 31
pp. 292 – 294

Abstract

Read online

ABSTRACT: Objectives: Cronobacter sakazakii is an emerging opportunistic foodborne pathogen that is frequently associated with life-threatening infections such as infantile septicemia, meningitis, and necrotizing enterocolitis. The emergence of antimicrobial-resistant, livestock-associated C. sakazakii is a great public health concern. Here, we report on the first draft genome sequence of C. sakazakii strain MEZCS99 sequence type 3 (ST3) isolated from feces from a healthy chicken in KwaZulu-Natal Province, South Africa. Methods: The genomic DNA of C. sakazakii was sequenced using an Illumina MiSeq platform (Illumina Inc., San Diego, CA). Generated reads were trimmed and de novo assembled. The assembled contigs were analyzed for virulence and antimicrobial resistance genes, extra-chromosomal plasmids, and multilocus sequence type (MLST). To compare the sequenced strains to other previously sequenced C. sakazakii strains, available raw read sequences of C. sakazakii were downloaded and all sequence files were treated identically to generate a core genome phylogenetic tree. Results: Intrinsic beta-lactam resistance gene blaCSA-1 was detected in MEZCS99. No colistin or other antibiotic resistance genes were detected. MEZCS99 belonged to ST3 and harbored an extra-chromosomal plasmid (IncFIB (pCTU3)). The genome of MEZCS99 strain showed two CRISPR/Cas cluster arrays of I-E (n = 1) and I-F (n = 1) type. Conclusion: The genome sequence of strain MEZCS99 will serve as a reference point for molecular epidemiological studies of livestock-associated C. sakazakii in Africa. In addition, this study allows in-depth analysis of the genomic structure and will provide valuable information that helps understand the pathogenesis and antimicrobial resistance of livestock-associated C. sakazakii.

Keywords