Leida xuebao (Jun 2016)
Weighted Least Squares Algorithm for Single-observer Passive Coherent Location Using DOA and TDOA Measurements
Abstract
In order to determine single-observer passive coherent locations using illuminators of opportunity, we propose a jointing angle and Time Difference Of Arrival (TDOA) Weighted Least Squares (WLS) location method. First, we linearize the DOA and TDOA measurement equations. We establish the localization problem as the WLS optimization model by considering the errors in the location equations. Then, we iteratively solve the WLS optimization. Finally, we conduct a performance analysis of the proposed method. Simulation results show that, unlike the TDOA-only method, which needs at least three illuminators to locate a target, the jointing DOA and TDOA method requires only one illuminator. It also has a higher localization accuracy than the TDOA-only method when using the same number of illuminators. The proposed method yields a lower mean square error than the least squares algorithm, which makes it possible to approach the Cramér-Rao lower bound at a relatively high TDOA noise level. Moreover, on the basis of the geometric dilution of precision, we conclude that the positions of the target and illuminators are also important factors affecting the localization accuracy.
Keywords