Brazilian Journal of Radiation Sciences (Feb 2021)
RELAP5 Modeling of a Siphon Break Effect on the Brazilian Multipurpose Reactor
Abstract
This work presents the thermal-hydraulic simulation of the Brazilian Multipurpose Reactor (RMB) using the RELAP5/Mod3 code. The RMB will provide Brazil with a fundamental infrastructure for the national development on activities of the nuclear sector in the areas of social, strategic, industrial applications and scientific and technological development. A RELAP5/Mod3 code model was developed for thermal-hydraulic simulation of the RMB to analyze the phenomenology of the Siphon Breakers device (four flap valves in the cold leg and one open tube for the atmosphere in the hot leg) during a Loss of Coolant Accident (LOCA) at different points in the primary circuit. The Siphon Breaker device is an important passive safety system for research reactors in order to guarantee the water level in the core under accidental conditions. Different simulations were carried out at different location in the Core Cooling System (CCS) of the RMB, for example: LOCA before the CCS pumps with and without pump trip and LOCA after the CCS pumps and the heat exchanger. In all RELAP5/Mod3 code simulations, the Siphon Breaker device's performance after a LOCA was effective to allow enough air to enter the outlet pipe of the CCS in order to break the siphon effect and preventing the pool level from reaching the riser (chimney) and the RMB core discovering. In all cases, the reactor pool level stabilized at about 5.5 m after the end of the LOCA simulation and the fuel elements were kept underwater and cooled.
Keywords