Energy and AI (Sep 2024)

Context-aware reinforcement learning for cooling operation of data centers with an Aquifer Thermal Energy Storage

  • Lukas Leindals,
  • Peter Grønning,
  • Dominik Franjo Dominković,
  • Rune Grønborg Junker

Journal volume & issue
Vol. 17
p. 100395

Abstract

Read online

Data centers are often equipped with multiple cooling units. Here, an aquifer thermal energy storage (ATES) system has shown to be efficient. However, the usage of hot and cold-water wells in the ATES must be balanced for legal and environmental reasons. Reinforcement Learning has been proven to be a useful tool for optimizing the cooling operation at data centers. Nonetheless, since cooling demand changes continuously, balancing the ATES usage on a yearly basis imposes an additional challenge in the form of a delayed reward. To overcome this, we formulate a return decomposition, Cool-RUDDER, which relies on simple domain knowledge and needs no training. We trained a proximal policy optimization agent to keep server temperatures steady while minimizing operational costs. Comparing the Cool-RUDDER reward signal to other ATES-associated rewards, all models kept the server temperatures steady at around 30 °C. An optimal ATES balance was defined to be 0% and a yearly imbalance of −4.9% with a confidence interval of [−6.2, −3.8]% was achieved for the Cool 2.0 reward. This outperformed a baseline ATES-associated reward of 0 at −16.3% with a confidence interval of [−17.1, −15.4]% and all other ATES-associated rewards. However, the improved ATES balance comes with a higher energy consumption cost of 12.5% when comparing the relative cost of the Cool 2.0 reward to the zero reward, resulting in a trade-off. Moreover, the method comes with limited requirements and is applicable to any long-term problem satisfying a linear state-transition system.

Keywords