International Journal of Molecular Sciences (Jun 2024)

Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in <i>Camelina sativa</i>

  • Kyeong-Ryeol Lee,
  • Yumi Yeo,
  • Jihyea Lee,
  • Semi Kim,
  • Chorong Im,
  • Inyoung Kim,
  • Juho Lee,
  • Seon-Kyeong Lee,
  • Mi Chung Suh,
  • Hyun Uk Kim

DOI
https://doi.org/10.3390/ijms25136944
Journal volume & issue
Vol. 25, no. 13
p. 6944

Abstract

Read online

Triacylglycerols (TAGs) are the storage oils of plant seeds, and these lipids provide energy for seed germination and valuable oils for human consumption. Three diacylglycerol acyltransferases (DGAT1, DGAT2, and DGAT3) and phospholipid:diacylglycerol acyltransferases participate in the biosynthesis of TAGs. DGAT1 and DGAT2 participate in the biosynthesis of TAGs through the endoplasmic reticulum (ER) pathway. In this study, we functionally characterized CsDGAT1 and CsDGAT2 from camelina (Camelina sativa). Green fluorescent protein-fused CsDGAT1 and CsDGAT2 localized to the ER when transiently expressed in Nicotiana benthamiana leaves. To generate Csdgat1 and Csdgat2 mutants using the CRISPR/Cas9 system, camelina was transformed with a binary vector carrying Cas9 and the respective guide RNAs targeting CsDGAT1s and CsDGAT2s via the Agrobacterium-mediated floral dip method. The EDD1 lines had missense and nonsense mutations in the CsDGAT1 homoeologs, suggesting that they retained some CsDGAT1 function, and their seeds showed decreased eicosaenoic acid (C20:1) contents and increased C18:3 contents compared to the wild type (WT). The EDD2 lines had a complete knockout of all CsDGAT2 homoeologs and a slightly decreased C18:3 content compared to the WT. In conclusion, CsDGAT1 and CsDGAT2 have a small influence on the seed oil content and have an acyl preference for C20:1 and C18:3, respectively. This finding can be applied to develop oilseed plants containing high omega-3 fatty acids or high oleic acid.

Keywords