AIMS Mathematics (Apr 2022)

Reflexive edge strength of convex polytopes and corona product of cycle with path

  • Kooi-Kuan Yoong,
  • Roslan Hasni,
  • Gee-Choon Lau,
  • Muhammad Ahsan Asim ,
  • Ali Ahmad

DOI
https://doi.org/10.3934/math.2022657
Journal volume & issue
Vol. 7, no. 7
pp. 11784 – 11800

Abstract

Read online

For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an edge irregular reflexive $ k $-labeling of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a reflexive edge strength of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.

Keywords