Cellular and Molecular Gastroenterology and Hepatology (Sep 2016)

Microgeographic Proteomic Networks of the Human Colonic Mucosa and Their Association With Inflammatory Bowel DiseaseSummary

  • Xiaoxiao Li,
  • James LeBlanc,
  • David Elashoff,
  • Ian McHardy,
  • Maomeng Tong,
  • Bennett Roth,
  • Andrew Ippoliti,
  • Gildardo Barron,
  • Dermot McGovern,
  • Keely McDonald,
  • Rodney Newberry,
  • Thomas Graeber,
  • Steve Horvath,
  • Lee Goodglick,
  • Jonathan Braun

Journal volume & issue
Vol. 2, no. 5
pp. 567 – 583

Abstract

Read online

Background & Aims: Interactions between mucosal cell types, environmental stressors, and intestinal microbiota contribute to pathogenesis in inflammatory bowel disease (IBD). Here, we applied metaproteomics of the mucosal–luminal interface to study the disease-related biology of the human colonic mucosa. Methods: We recruited a discovery cohort of 51 IBD and non-IBD subjects endoscopically sampled by mucosal lavage at 6 colonic regions, and a validation cohort of 38 no-IBD subjects. Metaproteome data sets were produced for each sample and analyzed for association with colonic site and disease state using a suite of bioinformatic approaches. Localization of select proteins was determined by immunoblot analysis and immunohistochemistry of human endoscopic biopsy samples. Results: Co-occurrence analysis of the discovery cohort metaproteome showed that proteins at the mucosal surface clustered into modules with evidence of differential functional specialization (eg, iron regulation, microbial defense) and cellular origin (eg, epithelial or hemopoietic). These modules, validated in an independent cohort, were differentially associated spatially along the gastrointestinal tract, and 7 modules were associated selectively with non-IBD, ulcerative colitis, and/or Crohn’s disease states. In addition, the detailed composition of certain modules was altered in disease vs healthy states. We confirmed the predicted spatial and disease-associated localization of 28 proteins representing 4 different disease-related modules by immunoblot and immunohistochemistry visualization, with evidence for their distribution as millimeter-scale microgeographic mosaic. Conclusions: These findings suggest that the mucosal surface is a microgeographic mosaic of functional networks reflecting the local mucosal ecology, whose compositional differences in disease and healthy samples may provide a unique readout of physiologic and pathologic mucosal states. Keywords: Inflammatory Bowel Disease, Mucosal, Networks, Ecology, Metaproteomics