Jin'gangshi yu moliao moju gongcheng (Feb 2022)
Undeformed chip thickness characteristics in grain-workpiece contact zone in ultrasonic vibration assisted grinding
Abstract
To accurately describe the undeformed chip thickness characteristics in ultrasonic vibration assisted grinding, the grain space and grain protrusion height of a metal bond multi-layer diamond wheel were measured. According to the particle trajectory equation of ultrasonic vibration assisted grinding and the trajectory interference theory of two nearby grains, the undeformed chip thickness in a complete grain-workpiece contact zone was solved by using the bisector method and MATLAB software. Then the influence of the main parameters on the undeformed chip thickness characteristics was analyzed. The results show that the undeformed chip thickness varies linearly against the distance between adjacent grains and the height difference of adjacent grains, increases linearly with the increase of ultrasonic amplitude and changes periodically with the increase of ultrasonic vibration frequency. In ultrasonic vibration assisted grinding, the undeformed chip thickness characteristics are greatly affected by the grinding wheel speed and grinding depth, and relatively less affected by the workpiece feed speed.
Keywords