Noninvasive neuromodulation protects against doxorubicin-induced cardiotoxicity and inhibits tumor growth
Mengjie Xie,
Fuding Guo,
Lingpeng Song,
Wuping Tan,
Xinrui Han,
Saiting Xu,
Xujun Li,
Yijun Wang,
Yueyi Wang,
Liping Zhou,
Xiaoya Zhou,
Hong Jiang,
Lilei Yu
Affiliations
Mengjie Xie
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Fuding Guo
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Lingpeng Song
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Wuping Tan
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Xinrui Han
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Saiting Xu
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Xujun Li
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Yijun Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Yueyi Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Liping Zhou
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China
Xiaoya Zhou
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Corresponding author
Hong Jiang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Corresponding author
Lilei Yu
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Corresponding author
Summary: Doxorubicin (Dox) poses a considerable threat to patients owing to its cardiotoxicity, thus limiting its clinical utility. Optimal cardioprotective intervention strategies are needed to suppress tumor growth but also minimize cardiac side effects. Here, we showed that tragus vagus nerve stimulation (tVNS) improved the imbalanced autonomic tone, ameliorated impaired cardiac function and fibrosis, attenuated myocyte apoptosis, and mitochondrial dysfunction compared to those in the Dox group. The beneficial effects were attenuated by methyllycaconitine citrate (MLA). The transcript profile revealed that there were 312 differentially expressed genes and the protection of tVNS and retardation of MLA were related to inflammatory response and NADPH oxidase activity. In addition, tVNS synergizing with Dox inhibited tumor growth and lung metastasis and promoted apoptosis of tumor cells in an anti-tumor immunity manner. These results indicated that non-invasive neuromodulation can play a dual role in preventing Dox-induced cardiotoxicity and suppressing tumor growth through inflammation and oxidative stress.