Heliyon (Nov 2024)
Interpretable multi-horizon time series forecasting of cryptocurrencies by leverage temporal fusion transformer
Abstract
This research delves into the obstacles and difficulties associated with predicting cryptocurrency movements in the volatile global financial market. This study develops and evaluates an advanced Deep Learning-Enhanced Temporal Fusion Transformer (ADE-TFT) model to estimate Bitcoin values more accurately. This research employs cutting-edge artificial intelligence (AI) and machine learning (ML) techniques to comprehensively examine various aspects of cryptocurrency forecasting, including geopolitical implications, market sentiment analysis, and pattern detection in transactional datasets. The study demonstrates that the ADE-TFT model outperforms its lower-layer counterparts in terms of forecasting accuracy, with reduced Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE) values, particularly when using a higher hidden layer configuration (h=8). The study emphasizes the importance of experimenting with different normalization strategies and utilizing various market-related data to enhance the model's performance. The results suggest that improving forecasting accuracy may require addressing these limitations and incorporating additional factors, such as market sentiment. By providing investors with more precise market predictions, the techniques and information presented in this research have the potential to significantly increase investor power in an unpredictable digital currency market, enabling wise investment choices.