Fibers (Jun 2020)

MESO-Scale Modeling of CFRP-Confined Concrete: Microplane-Based Approach

  • Serena Gambarelli,
  • Joško Ožbolt

DOI
https://doi.org/10.3390/fib8060038
Journal volume & issue
Vol. 8, no. 6
p. 38

Abstract

Read online

The present paper shows the results of three-dimensional (3D) meso-scale numerical simulations that were performed on unconfined and Carbon Fibre Reinforced Polymer (CFRP)-confined concrete specimens under uniaxial compression. The numerical results are compared with available experimental data. The meso-scale structure of concrete is composed by two phases, namely: the coarse aggregate and the mortar matrix. The presence of Interfacial Transition Zone (ITZ) is neglected. A simple generation procedure is used to randomly place the coarse aggregate inside the concrete specimens. The finite element code MASA is used to perform the three-dimensional (3D) Finite Element meso-scale simulations. The constitutive laws for mortar and epoxy resin are based on the microplane model, while an elastic-brittle behavior is assumed for the fibers. Aggregate in concrete is considered to be linear elastic. The adopted meso-scale model for concrete can realistically reproduce the mechanical behavior of both unconfined and CFRP-confined specimens. However, in the case of small corner radius, the effect of confinement predicted by the model is overestimated with respect to the experimental results. This is partially related to the simplifications introduced in the model in terms of aggregate volumetric fraction (10%) and aggregate size distribution. It is shown that a more detailed meso-scale model, which is characterized by 30% of the coarse aggregate and realistic aggregate size distribution, can better capture the interaction between the concrete heterogeneity and the confining effect provided by CFRP.

Keywords