Polymers (Dec 2023)

Large-Scale Fabrication of Tunable Sandwich-Structured Silver Nanowires and Aramid Nanofiber Films for Exceptional Electromagnetic Interference (EMI) Shielding

  • Xinbo Jiang,
  • Guoqiang Cai,
  • Jiangxiao Song,
  • Yan Zhang,
  • Bin Yu,
  • Shimin Zhai,
  • Kai Chen,
  • Hao Zhang,
  • Yihao Yu,
  • Dongming Qi

DOI
https://doi.org/10.3390/polym16010061
Journal volume & issue
Vol. 16, no. 1
p. 61

Abstract

Read online

The recent advancements in communication technology have facilitated the widespread deployment of electronic communication equipment globally, resulting in the pervasive presence of electromagnetic pollution. Consequently, there is an urgent necessity to develop a thin, lightweight, efficient, and durable electromagnetic interference (EMI) shielding material capable of withstanding severe environmental conditions. In this paper, we propose an innovative and scalable method for preparing EMI shielding films with a tunable sandwich structure. The film possesses a nylon mesh (NM) backbone, with AgNWs serving as the shielding coating and aramid nanofibers (ANFs) acting as the cladding layer. The prepared film was thin and flexible, with a thickness of only 0.13 mm. AgNWs can easily form a conductive network structure, and when the minimum addition amount was 0.2 mg/cm2, the EMI SE value reached 28.7 dB, effectively shielding 99.884% of electromagnetic waves and thereby meeting the commercial shielding requirement of 20 dB. With an increase in dosage up to 1.0 mg/cm2, the EMI SE value further improved to reach 50.6 dB. The NAAANF film demonstrated remarkable robustness in the face of complex usage environments as a result of the outstanding thermal, acid, and alkali resistance properties of aramid fibers. Such a thin, efficient, and environmentally resistant EMI shielding film provided new ideas for the broad EMI shielding market.

Keywords