PLoS ONE (Jan 2011)
Modulation of the host interferon response and ISGylation pathway by B. pertussis filamentous hemagglutinin.
Abstract
Bordetella pertussis filamentous hemagglutinin (FHA) is a surface-associated and secreted protein that serves as a crucial adherence factor, and displays immunomodulatory activity in human peripheral blood mononuclear cells (PBMCs). In order to appreciate more fully the role of secreted FHA in pathogenesis, we analyzed FHA-induced changes in genome-wide transcript abundance in human PBMCs. Among the 683 known unique genes with greater than 3-fold change in transcript abundance following FHA treatment, 125 (18.3%) were identified as interferon (IFN)-regulated. Among the latter group were genes encoding several members of the IFN type I response, as well as 3 key components of the ISGylation pathway. Using real-time RT-PCR, we confirmed FHA-associated increases in transcript abundance for the genes encoding ubiquitin-like protein, ISG15, and its specific protease USP18. Western-blot analysis demonstrated the presence of both, free ISG15 and several ISGylated conjugates in FHA-stimulated PBMC lysates, but not in unstimulated cells. Intracellular FACS analysis provided evidence that monocytes and a natural killer-enriched cell population were the primary producers of ISG15 in PBMCs after FHA stimulation. Our data reveal previously-unrecognized effects of B. pertussis FHA on host IFN and ISGylation responses, and suggest previously-unsuspected mechanisms by which FHA may alter the outcome of the host-pathogen interaction.