Applied Sciences (Oct 2023)

Integrated Longitudinal and Lateral Control of Emergency Collision Avoidance for Intelligent Vehicles under Curved Road Conditions

  • Fei Lai,
  • Hui Yang

DOI
https://doi.org/10.3390/app132011352
Journal volume & issue
Vol. 13, no. 20
p. 11352

Abstract

Read online

The operation of the automatic emergency braking (AEB) system may lead to a significant increase in lateral offset of vehicles in curved road conditions, which can pose a potential risk of collisions with vehicles in adjacent lanes or road edges. In order to address this issue, this study proposes an integrated longitudinal and lateral control strategy for collision avoidance during emergency braking, which utilizes a control algorithm based on Time to Collision (TTC) for longitudinal control and a control algorithm based on yaw angle and preview point lateral deviation for lateral control. On one hand, the AEB system facilitates proactive longitudinal intervention to prevent collisions in the forward direction. On the other hand, the Lane Keeping Assist (LKA) system allows for lateral intervention, reducing the lateral offset of the vehicle during braking. To evaluate the effectiveness of this integrated control strategy, a collaborative simulation model involving Matlab/Simulink, PreScan, and CarSim is constructed. Under typical curved road conditions, comparative simulations are conducted among three different control systems: ➀ AEB control system alone; ➁ independent control system of AEB and LKA; and ➂ integrated control system of AEB and LKA. The results indicate that although all three control systems are effective in preventing longitudinal rear-end collisions, the integrated control system outperforms the other two control systems significantly in suppressing the vehicle’s lateral offset. In the scenario with a curve radius of 60 m and an initial vehicle speed of 60 km/h, System ➀ exhibits a lateral offset from the lane centerline reaching up to 1.72 m. In contrast, Systems ➁ and ➂ demonstrate significant improvements with lateral offsets of 0.29 m and 0.21 m, respectively.

Keywords