Ecotoxicology and Environmental Safety (Jul 2021)

The role of PKA/PP2B-mediated Drp1 phosphorylation and the subsequent EGFR inhibition in Cr(VI)-induced premature senescence

  • Siwen Li,
  • Yu Ma,
  • Yuehui Liang,
  • Ningjuan Liang,
  • Shuzi Ye,
  • Fang Xiao

Journal volume & issue
Vol. 218
p. 112300

Abstract

Read online

In recent years, frequent hexavalent chromium [Cr(VI)] pollution incidents have severely damaged the ecology and endangered the public health. It is well known that cell senescence could promote the carcinogenesis, thus the related research on the occurrence of premature senescence is of great significance to the elucidation of the carcinogenic mechanism of Cr(VI). We previously confirmed that long-term low-dose Cr(VI) exposure induced premature senescence, but the key molecular events that determine the occurrence of premature senescence are still unclear. In the present study, we found that Cr(VI) induced phosphorylation of dynamin-relatedprotein 1 (Drp1)-S637 site in premature senescent cells, which was accompanied with the decrease of mitochondrial fission. We also demonstrated that the phosphorylation status of Drp1-S637 after Cr(VI) exposure was related to the antagonism of PKA/PP2B, and continuous dephosphorylation of Drp1-S637 attenuated premature senescence caused by Cr(VI). The epidermal growth factor receptor (EGFR) overexpression significantly alleviated the occurrence of premature senescence, and the expressions of EFGR and its downstream molecules were related to the phosphorylation status of Drp1-S637. In brief, we revealed the role of PKA/PP2B-mediated Drp1 phosphorylation and the subsequent EGFR inhibition in Cr(VI)-induced premature senescence. This study is the first time to link the phosphorylation of Drp1 with Cr(VI)-induced premature senescence, in order to find the key molecular events that determine the occurrence of premature senescence and demonstrate the molecular mechanism of abnormal elongated mitochondria formation in the senescence process. The significance of this study is to explore the carcinogenesis of Cr(VI) and provide new ideas and strategies for the targeted treatment of Cr(VI)-related cancers.

Keywords