Malaria Journal (Sep 2018)

Population pharmacokinetics of mefloquine given as a 3-day artesunate–mefloquine in patients with acute uncomplicated Plasmodium falciparum malaria in a multidrug-resistant area along the Thai–Myanmar border

  • Richard M. Hoglund,
  • Ronnatrai Ruengweerayut,
  • Kesara Na-Bangchang

DOI
https://doi.org/10.1186/s12936-018-2466-3
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Low mefloquine exposure has been shown to contribute to treatment failure in patients with uncomplicated falciparum malaria following a 3-day artesunate–mefloquine combination. The present study aimed to develop a population pharmacokinetic model for mefloquine based on whole blood concentration–time profiles of this target population for further dose optimization. Methods A total of 129 Burmese patients aged above 15 years who presented with typical symptoms of malaria and had a blood smear positive for Plasmodium falciparum were included in the study. All were treated with the standard 3-day combination regimen of artesunate and mefloquine consisting of mefloquine for 2 days and artesunate for 3 days. Blood samples were collected before and at different time points after drug administration from different sub-groups of patients. Mefloquine concentrations were quantified in whole blood using high-performance liquid chromatography. A non-linear mixed-effect modelling approach was applied for population pharmacokinetic analysis using the NONMEM v7.3 software. Covariates investigated (body weight, gender, admission parasitaemia, and molecular markers of mefloquine resistance) were investigated in a step-wise manner using the SCM functionality in Perl-Speaks-NONMEM. Results Population pharmacokinetic analysis of mefloquine was performed in all patients with a total of 653 samples. Whole blood mefloquine concentration–time profiles were described by a two-compartment disposition model. Of the covariates investigated, none was found to have a significant impact on the pharmacokinetics of mefloquine. Significant differences in maximum concentration (Cmax) and elimination half-life (t1/2) were found in patients who had treatment failure (36 cases) compared to patients with successful treatment (107 cases). Conclusion The study successfully describes the pharmacokinetics of mefloquine following a 2-day treatment of mefloquine as a part of a 3-day artesunate–mefloquine in patients with uncomplicated falciparum malaria from Thailand. A model has been developed which adequately describes the pharmacokinetics of mefloquine. More extensive clinical studies including both adults and children are needed to fully characterize the pharmacokinetics of mefloquine.

Keywords