Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology
Sarah Aldosari,
Maan Awad,
Elizabeth O. Harrington,
Frank W. Sellke,
M. Ruhul Abid
Affiliations
Sarah Aldosari
Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, Brown University Alpert Medical School, 1 Hoppin St, Coro West 5.231, Providence, RI 02903, USA
Maan Awad
Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, Brown University Alpert Medical School, 1 Hoppin St, Coro West 5.231, Providence, RI 02903, USA
Elizabeth O. Harrington
Providence VA Medical Center, Providence, RI 02908, USA
Frank W. Sellke
Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, Brown University Alpert Medical School, 1 Hoppin St, Coro West 5.231, Providence, RI 02903, USA
M. Ruhul Abid
Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, Brown University Alpert Medical School, 1 Hoppin St, Coro West 5.231, Providence, RI 02903, USA
There exist two opposing perspectives regarding reactive oxygen species (ROS) and their roles in angiogenesis and cardiovascular system, one that favors harmful and causal effects of ROS, while the other supports beneficial effects. Recent studies have shown that interaction between ROS in different sub-cellular compartments plays a crucial role in determining the outcomes (beneficial vs. deleterious) of ROS exposures on the vascular system. Oxidant radicals in one cellular organelle can affect the ROS content and function in other sub-cellular compartments in endothelial cells (ECs). In this review, we will focus on a critical fact that the effects or the final phenotypic outcome of ROS exposure to EC are tissue- or organ-specific, and depend on the spatial (subcellular localization) and temporal (duration of ROS exposure) modulation of ROS levels.