Current Directions in Biomedical Engineering (Sep 2015)
Automated classification of stages of anaesthesia by populations of evolutionary optimized fuzzy rules
Abstract
The detection of stages of anaesthesia is mainly performed on evaluating the vital signs of the patient. In addition the frontal one-channel electroencephalogram can be evaluated to increase the correct detection of stages of anaesthesia. As a classification model fuzzy rules are used. These rules are able to classify the stages of anaesthesia automatically and were optimized by multiobjective evolutionary algorithms. As a result the performance of the generated population of fuzzy rule sets is presented. A concept of the construction of an autonomic embedded system is introduced. This system should use the generated rules to classify the stages of anaesthesia using the frontal one-channel electroencephalogram only.