Journal of the Egyptian Mathematical Society (Feb 2022)
Mathematical modelling of mantle convection at a high Rayleigh number with variable viscosity and viscous dissipation
Abstract
Abstract In this paper, the classical Rayleigh–Bénard convection model is considered and solved numerically for extremely large viscosity variations (i.e., up to $$10^{30}$$ 10 30 ) across the mantle at a high Rayleigh number. The Arrhenius form of viscosity is defined as a cut-off viscosity function. The effects of viscosity variation and viscous dissipation on convection with temperature-dependent viscosity and also temperature- and pressure-dependent viscosity are shown through the figures of temperature profiles and streamline contours. The values of Nusselt number and root mean square velocity indicate that the convection becomes significantly weak as viscosity variation and viscous dissipation are increased at a fixed pressure dependence parameter.
Keywords