Beilstein Journal of Organic Chemistry (Sep 2017)

Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz–Fritsch–Bobbitt reaction with non-activated and moderately-activated systems

  • Marco Mottinelli,
  • Mathew P. Leese,
  • Barry V. L. Potter

DOI
https://doi.org/10.3762/bjoc.13.182
Journal volume & issue
Vol. 13, no. 1
pp. 1871 – 1878

Abstract

Read online

Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz–Fritsch–Bobbit (PFB) methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated.Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO4 alone was effective. When cyclization was possible in both para- and ortho-positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6- and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[c,f]azonine was exclusively obtained. Furthermore, selective ring closure in the para-position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO4.Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N-aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines.

Keywords