PLoS ONE (Jan 2021)
Physical properties of lactic acid bacteria influence the level of protection against influenza infection in mice.
Abstract
We evaluated whether the water dispersibility of lactic acid bacteria (Enterococcus faecalis KH2) affects their efficacy. When cultured lactic acid bacteria are washed, heat-killed, and powdered, adhesion occurs between results in aggregation (non-treated lactic acid bacteria, n-LAB). However, dispersed lactic acid bacteria (d-LAB) with a lower number of aggregates can be prepared by treating them with a high-pressure homogenizer and adding an excipient during powdering. Mice were administered n-LAB or d-LAB Peyer's patches in the small intestine were observed. Following n-LAB administration, a high amount of aggregated bacteria drifting in the intestinal mucosa was observed; meanwhile, d-LAB reached the Peyer's patches and was absorbed into them. Evaluation in a mouse influenza virus infection model showed that d-LAB was more effective than n-LAB in the influenza yield of bronchoalveolar lavage fluids on day 3 post-infection and neutralizing antibody titers of sera and influenza virus-specific immunoglobulin A in the feces on day 14 post-infection. Therefore, the physical properties of lactic acid bacteria affect their efficacy; controlling their water dispersibility can improve their effectiveness.