Remote Sensing (Feb 2014)

A Nine-Year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E

  • David Bröhan,
  • Lars Kaleschke

DOI
https://doi.org/10.3390/rs6021451
Journal volume & issue
Vol. 6, no. 2
pp. 1451 – 1475

Abstract

Read online

We infer the fractional coverage of sea ice leads (as concentration) in the Arctic from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) brightness temperatures. The lead concentration resolves leads of at least 3 km in width. We introduce a new algorithm based on the progressive probabilistic Hough transform to automatically infer lead positions and orientations from daily AMSR-E satellite observations. Because the progressive probabilistic Hough transform often detects an identical lead several times the algorithm clusters neighboring leads that belong to one lead position. A first comparison of automatically detected lead positions and orientations with manually detected lead positions and orientations reveals that 57% of the reference leads are correctly determined. Around 11% of automatically detected leads are located where no reference lead occurs. The automatically detected lead orientations are distributed slightly differently from the reference lead orientations. A second comparison of automatically detected leads in the Fram Strait to leads in a wide swath mode Advanced Synthetic Aperture Radar scene shows a good agreement. We provide an Arctic-wide time series of lead orientations for winters from 2002 to 2011. For example, while a lead orientation of 110° with respect to the Greenwich meridian prevails in the Fram Strait, lead orientations in the Beaufort Sea are more isotropically distributed. We find significant preferred lead orientations almost everywhere in the Arctic Ocean when averaged over the entire AMSR-E time series.

Keywords