G3: Genes, Genomes, Genetics (Jan 2018)

Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis

  • Ani A. Elias,
  • Ismail Rabbi,
  • Peter Kulakow,
  • Jean-Luc Jannink

DOI
https://doi.org/10.1534/g3.117.300323
Journal volume & issue
Vol. 8, no. 1
pp. 53 – 62

Abstract

Read online

Cassava (Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant.

Keywords