Nature Communications (Jun 2021)

A deep learning approach to identify gene targets of a therapeutic for human splicing disorders

  • Dadi Gao,
  • Elisabetta Morini,
  • Monica Salani,
  • Aram J. Krauson,
  • Anil Chekuri,
  • Neeraj Sharma,
  • Ashok Ragavendran,
  • Serkan Erdin,
  • Emily M. Logan,
  • Wencheng Li,
  • Amal Dakka,
  • Jana Narasimhan,
  • Xin Zhao,
  • Nikolai Naryshkin,
  • Christopher R. Trotta,
  • Kerstin A. Effenberger,
  • Matthew G. Woll,
  • Vijayalakshmi Gabbeta,
  • Gary Karp,
  • Yong Yu,
  • Graham Johnson,
  • William D. Paquette,
  • Garry R. Cutting,
  • Michael E. Talkowski,
  • Susan A. Slaugenhaupt

DOI
https://doi.org/10.1038/s41467-021-23663-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Drugs that modify RNA splicing are promising treatments for many genetic diseases. Here the authors show that deep learning strategies can predict drug targets, strongly supporting the use of in silico approaches to expand the therapeutic potential of drugs that modulate RNA splicing.