Materials (Aug 2024)

The Influence and Mechanism of Curing Methods and Curing Age on the Mechanical Properties of Yellow River Sand Engineered Cementitious Composites

  • Kunpeng Zhang,
  • Weijun Wu,
  • Jiahui Fan,
  • Chengfang Yuan

DOI
https://doi.org/10.3390/ma17174307
Journal volume & issue
Vol. 17, no. 17
p. 4307

Abstract

Read online

This study investigates the potential use of Yellow River sand (YRS) sourced from the lower reaches of the Yellow River in China as a sustainable and cost-effective substitute for quartz sand in Engineered Cementitious Composites (ECC). With an annual accumulation of approximately 400 million tons in this region, YRS presents a substantial resource. ECC specimens with 100% YRS replacement with quartz sand were subjected to various curing methods: natural, steam, standard, and sprinkler. Extensive mechanical testing including flexural, compressive, uniaxial tensile, and four-point flexural tests was conducted. Additionally, Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses investigated microscopic mechanisms influencing macroscopic mechanical properties. Finally, the mechanical properties of the YRS-ECC test block after 14 days of standard curing and the traditional sand ECC test block were compared and analyzed. The results indicate that ECC specimens with 100% YRS substitution under natural curing show an optimal ultimate tensile strain of more than 4%, providing the best resistance to the reduction in ultimate flexural load and deflection due to aging. Steam curing enhances flexural and compressive strength, achieving an ultimate flexural load of 5 kN and a maximum deflection of 4.42 mm at 90 days. SEM analysis revealed lower C-S-H gel density under natural curing and higher under steam curing, enhancing fiber pull-out in steam-cured specimens. The MIP tests demonstrated that natural curing had the highest porosity (32.86%) and average pore size (51.69 nm), whereas steam curing resulted in the smallest average pore size, with 44% of pores under 50 nm. Compared with traditional sand, it is found that the ultimate bending load and deflection of YRS-ECC are 5.7% and 9.4% higher than those of traditional sand ECC, respectively, and its ultimate tensile strength and strain are also improved. These findings highlight YRS as a sustainable alternative to natural sand in ECC, with natural curing proving the most effective for superior mechanical performance, including tensile strain, crack resistance, and durability.

Keywords