Biomolecules & Biomedicine (Apr 2024)

Development of dynamic nomogram for predicting cancer-specific survival in hepatoid adenocarcinoma: A comprehensive SEER-based population analysis

  • Qing-Zhe Wang,
  • Yi-Xin Zhou,
  • Xiao-Li Mu,
  • Jia-Ling Wang,
  • Shuang Zhang,
  • Ye Chen

DOI
https://doi.org/10.17305/bb.2024.10445

Abstract

Read online

Hepatoid adenocarcinoma (HAC) is a poorly differentiated extrahepatic tumor that can produce alpha-fetoprotein (AFP). The literature does not provide a comprehensive understanding of the prognostic factors for HAC. Therefore, we present a novel nomogram to predict the cancer-specific survival (CSS) of patients with HAC. We analyzed 265 cases of HAC from the Surveillance, Epidemiology, and End Results (SEER) database spanning from 2004 to 2015. Using a Cox proportional hazard regression model, we identified several risk factors and incorporated them into our predictive nomogram. The nomogram's predictive ability was assessed by utilizing the concordance index (C-index), calibration curve, and receiver operating characteristic (ROC). Results from a multivariate Cox regression showed that CSS was independently correlated with liver metastasis, surgery, and chemotherapy. Our nomogram had a C-index of 0.71 (95% CI 0.71-0.96). Furthermore, calibration curves demonstrated concordance between the predicted survival probability from the nomogram and the observed survival probability. The areas under the curve (AUC) for 6-month, 1-, and 3-year survival were 0.80, 0.82, and 0.88, respectively. Our study successfully formulated a prognostic nomogram that offers promising predictions for the 6-month, 1-, and 3-year CSS of patients with HAC. This nomogram holds potential for practical use in guiding treatment decisions and designing clinical trials.

Keywords