Maderas: Ciencia y Tecnología (Nov 2024)
Effect of the heat treatment on the physicochemical characteristics of rubberwood: Results of thermal analysis and FTIR spectroscopy
Abstract
Heat treatment is an environmentally friendly method used to improve properties of rubberwood. In this work, the changes in the chemical composition, thermal behavior and thermal degradation kinetics of heat-treated Hevea brasiliensis (rubber tree) were evaluated using thermogravimetry, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The rubberwood samples were exposed to temperatures of 180 °C and 220 °C in air under atmospheric pressure for durations of 15 25 and 35 h. Thermal analysis revealed degradation of hemicelluloses, an increase in the relative proportions of cellulose and lignin in heat-treated rubberwood. The thermal decomposition of rubberwood heat-treated at 220 °C started at a higher temperature compared to untreated wood. A shift in the position of peaks on differential thermogravimetry and differential scanning calorimetry curves of heat-treated samples was observed, indicating changes in the structure of wood polymers. The temperature of heat treatment had a stronger effect on the chemical composition of rubberwood than duration. Significant changes in the chemical composition of rubberwood occurred after the treatment duration of 15 h at both 180 °C and 220 °C. The duration of 25 h and 35 h had no further substantial effect. The isoconversional method of Flynn-Wall-Ozawa was used to determine the kinetics of thermal degradation of untreated and heat-treated rubberwood. It is found that the average values of activation energy in the conversion degree range of 0,05 - 0,65 (the thermal degradation of polysaccharides) increased with increasing treatment temperature and duration. Fourier transform infrared spectra demonstrated alterations in wood polymers.
Keywords