OpenNano (May 2023)

Promising synthesized bis (arylmethylidene) acetone -polymeric PCL emulsified nanoparticles with enhanced antimicrobial/antioxidant efficacy: in-vitro and in-vivo evaluation

  • Sally A. Abou Taleb,
  • Shaymaa Abdalla Ismail,
  • Marwan Mohamed,
  • Reda M. Mourad,
  • Hadeer A. El-Hashemy

Journal volume & issue
Vol. 11
p. 100139

Abstract

Read online

Introduction: Recently, bis(arylmethylidene)acetone drugs known as C5-curcumin, were acknowledged for their potent biological effects as a neoteric synthetic alternative to curcumin effectively used to treat many diseases. Methods: In this study, new polymeric emulsified nanoparticles (PENS) carrying biodegradable polycaprolactone (PCL) polymer moieties within their framework were developed as promising carriers for a modern synthesized bis(arylmethylidene)acetone “(1E,4E)-1,5-di(thiophen-2-yl) penta-1,4dien-3-one” (TPO) with improved bioavailability. Such systems were evaluated by studying their; encapsulation efficiency, release behavior, physicochemical evaluations, TEM and SEM measurements and cytotoxicity, besides the in-vitro and in-vivo biological studies screening. Results: The results revealed high encapsulation efficiency ranging between 99.31± 2.15 and 99.55 ± 2.03 %, and a sustained release behavior for up to 24 h with nanosized particle size. TPO emulsified nanoparticles (TPO-ENPs) showed effective antimicrobial activity against Candida albicans and Aspergillus brasiliensis as well as antioxidant efficacy with a higher scavenging activity of 177.6μg TE/ mg against free radicals of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) relatively to the control drug. F1’ and F2’ TPO-ENPs were safe on Vero-cells and proved a significant reduction of hepatocellular alterations and serum ALT levels in control groups. Conclusion: In conclusion, these novel synthesized TPO-ENPs showed pronounced efficacy as antimicrobial/ antioxidant/ anti-inflammatory/ analgesic/ hepatoprotective therapeutic vehicles.

Keywords