Injection locking in an optomechanical coherent phonon source
Arregui Guillermo,
Colombano Martín F.,
Maire Jeremie,
Pitanti Alessandro,
Capuj Néstor E.,
Griol Amadeu,
Martínez Alejandro,
Sotomayor-Torres Clivia M.,
Navarro-Urrios Daniel
Affiliations
Arregui Guillermo
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193Barcelona, Spain
Colombano Martín F.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193Barcelona, Spain
Maire Jeremie
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193Barcelona, Spain
Pitanti Alessandro
NEST Lab., CNR - Istituto di Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56217Pisa, Italy
Capuj Néstor E.
Depto. Física, Universidad de La Laguna, 38200San Cristóbal de La Laguna, Spain
Griol Amadeu
Nanophotonics Technology Center, Universitat Politècnica de Valencia, 46022Valencia, Spain
Martínez Alejandro
Nanophotonics Technology Center, Universitat Politècnica de Valencia, 46022Valencia, Spain
Sotomayor-Torres Clivia M.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193Barcelona, Spain
Navarro-Urrios Daniel
MIND-IN2UB, Departament d’Enginyeria Electrònica i Biomèdica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
Spontaneous locking of the phase of a coherent phonon source to an external reference is demonstrated in a deeply sideband-unresolved optomechanical system. The high-amplitude mechanical oscillations are driven by the anharmonic modulation of the radiation pressure force that result from an absorption-mediated free-carrier/temperature limit cycle, i.e., self-pulsing. Synchronization is observed when the pump laser driving the mechanical oscillator to a self-sustained state is modulated by a radiofrequency tone. We employ a pump-probe phonon detection scheme based on an independent optical cavity to observe only the mechanical oscillator dynamics. The lock range of the oscillation frequency, i.e., the Arnold tongue, is experimentally determined over a range of external reference strengths, evidencing the possibility to tune the oscillator frequency for a range up to 350 kHz. The stability of the coherent phonon source is evaluated via its phase noise, with a maximum achieved suppression of 44 dBc/Hz at 1 kHz offset for a 100 MHz mechanical resonator. Introducing a weak modulation in the excitation laser reveals as a further knob to trigger, control and stabilize the dynamical solutions of self-pulsing based optomechanical oscillators, thus enhancing their potential as acoustic wave sources in a single-layer silicon platform.