Crop Breeding and Applied Biotechnology (Nov 2014)

Genetic evaluation of popcorn families using a Bayesian approach via the independence chain algorithm

  • Marcos Rodovalho,
  • Freddy Mora,
  • Osvin Arriagada,
  • Carlos Maldonado,
  • Emmanuel Arnhold,
  • Carlos Alberto Scapim

Journal volume & issue
Vol. 14, no. 4
pp. 261 – 265

Abstract

Read online

The objective of this study was to examine genetic parameters of popping expansion and grain yield in a trial of 169 halfsib families using a Bayesian approach. The independence chain algorithm with informative priors for the components of residual and family variance (inverse-gamma prior distribution) was used. Popping expansion was found to be moderately heritable, with a posterior mode of h2 of 0.34, and 90% Bayesian confidence interval of 0.22 to 0.44. The heritability of grain yield (family level) was moderate (h2 = 0.4) with Bayesian confidence interval of 0.28 to 0.49. The target population contains sufficient genetic variability for subsequent breeding cycles, and the Bayesian approach is a useful alternative for scientific inference in the genetic evaluation of popcorn.

Keywords