Applied Sciences (Oct 2021)
Semi-Active Vibration Control Based on a Smart Exciter with an Optimized Electrical Shunt Circuit
Abstract
A smart exciter coupled to cabin panels can be used as a new type of loudspeaker for emergency announcements in the aircraft cabin. The same device can also be used as a semi-active vibration control system which is effective in reducing the amplitude of structural vibration. The objective of this paper is to investigate the potential of vibration reduction using a smart exciter in combination with an optimized resistive-inductive shunt circuit, which serves as an absorbing network. First, the vibration reduction effect has been analyzed numerically using a simulation framework realized with COMSOL and MATLAB/Simulink. In a second step, the reduction effect of the smart exciter together with a resistive-inductive shunt circuit, which is produced by the Center of Applied Aeronautical Research (Zentrum für Angewandte Luftfahrtforschung GmbH, Hamburg, Germany), has been investigated experimentally. The results presented here prove that the smart exciter together with a resistive-inductive shunt can be highly effective in reducing structural vibrations.
Keywords