Royal Society Open Science (Jun 2024)

Short-term plasticity as ‘energetic memory’ of ion channel components of action potential

  • Yuval Ben Abu,
  • Ira Wolfson

DOI
https://doi.org/10.1098/rsos.231420
Journal volume & issue
Vol. 11, no. 6

Abstract

Read online

Information transfer in the nervous system is traditionally understood by the transmission of action potentials along neuronal dendrites, with ion channels in the membrane as the basic unit operator for their creation and propagation. We present here a new model for the multiphysics behaviour of ion channels and the action potential dynamics in nervous and other signal-transmitting systems. This model is based on the long-term suppression of an action potential as a response to mechanical input. While other models focus on electrical aspects of the action potential, an increasing body of experiments highlights its electro-mechanical nature and points in particular towards an alteration of the action potential when subjected to a mechanical input. Here, we propose a new phenomenological framework able to capture the mechanical aspect of ion channel dynamics and the resulting effect on the overall electrophysiology of the membrane. The model is introduced here through a set of coupled differential equations that describe the system while agreeing with the general findings of the experiments that support an electro-mechanical model. It also confirms that transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of neuronal action potentials, which are smaller and slower under indentation loading conditions. Changes after the loading release are also reversible, albeit on a different time scale.

Keywords