Brain Image Analysis Unit, RIKEN, Wako, Saitama 351-0198, Japan
Yohei Sasagawa
Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
Noriko Fujimori
Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Support Unit for Bio-Material Analysis, Research Resource Division, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
Yoshimi Iwayama
Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
Ayako Isomura-Matoba
Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan
Minoru Yano
Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
Takumi Ichikawa
Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
Itoshi Nikaido
Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
Nobutaka Hattori
Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Department of Neurology, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan
Tadafumi Kato
Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Department of Psychiatry, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Corresponding author
Summary: The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.