Energies (Oct 2022)

Geochemical Characteristics of the Chang 7 Source Rocks of the Triassic Yanchang Formation in Ordos Basin, China: Implications for Organic Matter Accumulation and Shale Oil Potential

  • Lewei Hao,
  • Xiaofeng Ma,
  • Wenqiang Gao,
  • Zhaocai Ren,
  • Huifei Tao,
  • Weikai Huang

DOI
https://doi.org/10.3390/en15207815
Journal volume & issue
Vol. 15, no. 20
p. 7815

Abstract

Read online

The Chang 7 member of the Upper Triassic Yanchang Formation in the Ordos Basin is considered to hold the main source rocks for conventional and unconventional oil and gas. The lamination or lithology alteration in vertical and lateral directions, even over a short distance, is a common feature in lacustrine source rocks. The differences in the geochemical characteristics of black shales, dark mudstones and interbedded sandstones have been scarcely reported, and their influences on the petroleum generation potential and shale oil potential are not clear. To this end, 22 core samples were collected from the Lower and Middle Chang 7 (C7-3 and C7-2) members of the Triassic from well CYX in the Qingcheng area. By conducting a series of geochemical analyses including TOC, Rock-Eval pyrolysis yields, bitumen extraction and quantification, and the separation and quantification of saturates, aromatics, resins and asphaltenes, along with biomarker analyses, several results were found. Firstly, the C7-3 and C7-2 source rocks are thermally mature and have entered into the stage of hydrocarbon generation. The C7-3 and C7-2 source rocks have a good to very good hydrocarbon generation potential especially the C7-3 black shales. Secondly, terrigenous source input is more abundant in C7-2, whereas the source input of phytoplankton, algae or microbial lipids is more abundant in C7-3. Moreover, a high TOC content basically corresponds to low wax indexes, terrigenous/aquatic ratios (TARs), and Pr/nC17 and Ph/nC18 ratios and high C27/C29 regular sterane ratios, which suggests that the source input of phytoplankton, algae or microbial lipids is favorable for OM accumulation. Third, analyses of the molecular composition of saturated fractions in shales and interbedded sandstones and the production index demonstrate the migration of petroleum from organic-rich source rocks to their organic-lean counterparts. The C7-2 dark mudstones could be considered as a potential “sweet spot” since their oil saturation index (OSI) was the highest among all the studied samples and they are more enriched in light aliphatic fractions.

Keywords