Integrated Analysis of Gut Microbiome and Lipid Metabolism in Mice Infected with Carbapenem-Resistant <i>Enterobacteriaceae</i>
Ning Zhang,
Yuanyuan Peng,
Linjing Zhao,
Peng He,
Jiamin Zhu,
Yumin Liu,
Xijian Liu,
Xiaohui Liu,
Guoying Deng,
Zhong Zhang,
Meiqing Feng
Affiliations
Ning Zhang
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Yuanyuan Peng
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Linjing Zhao
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Peng He
Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
Jiamin Zhu
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Yumin Liu
Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, China
Xijian Liu
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Xiaohui Liu
School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
Guoying Deng
Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
Zhong Zhang
Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
Meiqing Feng
Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals–host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites–reaction–enzyme–gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection.