Journal of Materiomics (May 2022)

Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors

  • Liming Peng,
  • Shiqi Yang,
  • Tian-Ran Wei,
  • Pengfei Qiu,
  • Jiong Yang,
  • Zhen Zhang,
  • Xun Shi,
  • Lidong Chen

Journal volume & issue
Vol. 8, no. 3
pp. 656 – 661

Abstract

Read online

By virtue of the excellent plasticity and tunable transport properties, Ag2S-based materials demonstrate an intriguing prospect for flexible or hetero-shaped thermoelectric applications. Among them, Ag2S1-xTex exhibits rich and interesting variations in crystal structure, mechanical and thermoelectric transport properties. However, Te alloying obviously introduces extremely large order-disorder distributions of cations and anions, leading to quite complicated crystal structures and thermoelectric properties. Detailed composition-structure-performance correlation of Ag2S1-xTex still remains to be established. In this work, we designed and prepared a series of Ag2S1-xTex (x = 0–0.3) materials with low Te content. We discovered that the monoclinic-to-cubic phase transition occurs around x = 0.16 at room temperature. Te alloying plays a similar role as heating in facilitating this monoclinic-to-cubic phase transition, which is analyzed based on the thermodynamic principles. Compared with the monoclinic counterparts, the cubic-structured phases are more ductile and softer in mechanical properties. In addition, the cubic phases show a degenerately semiconducting behavior with higher thermoelectric performance. A maximum zT = 0.8 at 600 K and bending strain larger than 20% at room temperature were obtained in Ag2S0.7Te0.3. This work provides a useful guidance for designing Ag2S-based alloys with enhanced plasticity and high thermoelectric performance.

Keywords