Axioms (Feb 2023)

PSEV-BF Methodology for Object Recognition of Birds in Uncontrolled Environments

  • Lucía J. Hernández-González,
  • Juan Frausto-Solís,
  • Juan J. González-Barbosa,
  • Juan Paulo Sánchez-Hernández,
  • Deny Lizbeth Hernández-Rabadán,
  • Edgar Román-Rangel

DOI
https://doi.org/10.3390/axioms12020197
Journal volume & issue
Vol. 12, no. 2
p. 197

Abstract

Read online

Computer vision methodologies using machine learning techniques usually consist of the following phases: pre-processing, segmentation, feature extraction, selection of relevant variables, classification, and evaluation. In this work, a methodology for object recognition is proposed. The methodology is called PSEV-BF (pre-segmentation and enhanced variables for bird features). PSEV-BF includes two new phases compared to the traditional computer vision methodologies, namely: pre-segmentation and enhancement of variables. Pre-segmentation is performed using the third version of YOLO (you only look once), a convolutional neural network (CNN) architecture designed for object detection. Additionally, a simulated annealing (SA) algorithm is proposed for the selection and enhancement of relevant variables. To test PSEV-BF, the repository commons object in Context (COCO) was used with images exhibiting uncontrolled environments. Finally, the APIoU metric (average precision intersection over union) is used as an evaluation benchmark to compare our methodology with standard configurations. The results show that PSEV-BF has the highest performance in all tests.

Keywords