Railway Sciences (Apr 2023)
MPC-based time synchronization method for V2V (vehicle-to-vehicle) communication
Abstract
Purpose – As the strategy of 5G new infrastructure is deployed and advanced, 5G-R becomes the primary technical system for future mobile communication of China’s railway. V2V communication is also an important application scenario of 5G communication systems on high-speed railways, so time synchronization between vehicles is critical for train control systems to be real-time and safe. How to improve the time synchronization performance in V2V communication is crucial to ensure the operational safety and efficiency of high-speed railways. Design/methodology/approach – This paper proposed a time synchronization method based on model predictive control (MPC) for V2V communication. Firstly, a synchronous clock for V2V communication was modeled based on the fifth generation mobile communication-railway (5G-R) system. Secondly, an observation equation was introduced according to the phase and frequency offsets between synchronous clocks of two adjacent vehicles to construct an MPC-based space model of clock states of the adjacent vehicles. Finally, the optimal clock offset was solved through multistep prediction, rolling optimization and other control methods, and time synchronization in different V2V communication scenarios based on the 5G-R system was realized through negative feedback correction. Findings – The results of simulation tests conducted with and without a repeater, respectively, show that the proposed method can realize time synchronization of V2V communication in both scenarios. Compared with other methods, the proposed method has faster convergence speed and higher synchronization precision regardless of whether there is a repeater or not. Originality/value – This paper proposed an MPC-based time synchronization method for V2V communication under 5G-R. Through the construction of MPC controllers for clocks of adjacent vehicles, time synchronization was realized for V2V communication under 5G-R by using control means such as multistep prediction, rolling optimization, and feedback correction. In view of the problems of low synchronization precision and slow convergence speed caused by packet loss with existing synchronization methods, the observer equation was introduced to estimate the clock state of the adjacent vehicles in case of packet loss, which reduces the impact of clock error caused by packet loss in the synchronization process and improves the synchronization precision of V2V communication. The research results provide some theoretical references for V2V synchronous wireless communication under 5G-R technology.
Keywords