Nanomaterials (Dec 2021)

Tailoring Amine-Functionalized Ti-MOFs via a Mixed Ligands Strategy for High-Efficiency CO<sub>2</sub> Capture

  • Yinji Wan,
  • Yefan Miao,
  • Tianjie Qiu,
  • Dekai Kong,
  • Yingxiao Wu,
  • Qiuning Zhang,
  • Jinming Shi,
  • Ruiqin Zhong,
  • Ruqiang Zou

DOI
https://doi.org/10.3390/nano11123348
Journal volume & issue
Vol. 11, no. 12
p. 3348

Abstract

Read online

Amine-functionalized metal-organic frameworks (MOFs) are a promising strategy for the high-efficiency capture and separation of CO2. In this work, by tuning the ratio of 1,3,5-benzenetricarboxylic acid (H3BTC) to 5-aminoisophthalic acid (5-NH2-H2IPA), we designed and synthesized a series of amine-functionalized highly stable Ti-based MOFs (named MIP-207-NH2-n, in which n represents 15%, 25%, 50%, 60%, and 100%). The structural analysis shows that the original framework of MIP-207 in the MIP-207-NH2-n (n = 15%, 25%, and 50%) MOFs remains intact when the mole ratio of ligand H3BTC to 5-NH2-H2IPA is less than 1 to 1 in the resulting MOFs. By the introduction of amino groups, MIP-207-NH2-25% demonstrates outstanding CO2 capture performance up to 3.96 and 2.91 mmol g−1, 20.7% and 43.3% higher than those of unmodified MIP-207 at 0 and 25 °C, respectively. Furthermore, the breakthrough experiment indicates that the dynamic CO2 adsorption capacity and CO2/N2 separation factors of MIP-207-NH2-25% are increased by about 25% and 15%, respectively. This work provides an additional strategy to construct amine-functionalized MOFs with the maintenance of the original MOF structure and high performance of CO2 capture and separation.

Keywords