International Journal of Naval Architecture and Ocean Engineering (Sep 2016)
Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails
Abstract
The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was 4.65° at the designed speed, but the spray rails at optimum location reduced trim by 0.97°. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.
Keywords