Ecotoxicology and Environmental Safety (Dec 2021)

Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China

  • Jun Liang,
  • Chunxiu Yang,
  • Tao Liu,
  • Hui Juan Jennifer Tan,
  • Yonghong Sheng,
  • Liangjia Wei,
  • Peng Tang,
  • Huishen Huang,
  • Xiaoyun Zeng,
  • Shun Liu,
  • Dongping Huang,
  • Xiaoqiang Qiu

Journal volume & issue
Vol. 228
p. 112960

Abstract

Read online

Preterm birth (PTB), a serious adverse birth outcome, is the leading cause of perinatal mortality and morbidity. Bisphenols induce endocrine disruption that spreads across the placenta, which may affect fetal growth and development. However, the effects of bisphenols on PTB, particularly their combined effects, remain unknown. This study investigated the association between prenatal bisphenol exposure and PTB. Study participants were 2023 mother-infant pairs that were selected from the Guangxi Zhuang Birth Cohort. Maternal serum bisphenol levels were measured using ultrahigh performance liquid chromatography-tandem mass spectrometry, and pregnancy outcomes were obtained from medical records. Multivariate logistic regression, restricted cubic spline, principal component analysis (PCA), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) were used to examine the association between serum bisphenol levels and PTB. Ln-transformed BPA concentrations were associated with an increased risk of PTB only in female infants (OR = 1.30, 95% CI: 1.02, 1.64). Ln-transformed bisphenol F (BPF) concentrations were positively associated with the risk of PTB (OR = 1.73, 95% CI: 1.18, 2.55). Inverse U-shaped relationships were observed between bisphenol B (BPB), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) levels and the risk of PTB (P-overall < 0.05, P-non-linear < 0.05). After sex stratification, the association between BPA analogs and PTB was only observed in males. In Qgcomp analysis, bisphenol mixtures were related to an increased risk of PTB (OR = 1.52, 95% CI: 1.04, 2.21), with BPF (43.7%), BPS (29.6%) and BPA (26.8%) having the greatest positive contribution. Results indicate that prenatal exposure to bisphenol mixtures might increase the risk of PTB, which might be primarily driven by BPA, BPF and BPS. There may also be sex-specific and nonmonotonic dose-dependent effects.

Keywords