Scientific Reports (May 2024)

Identification of candidate biomarkers for GBM based on WGCNA

  • Qinghui Sun,
  • Zheng Wang,
  • Hao Xiu,
  • Na He,
  • Mingyu Liu,
  • Li Yin

DOI
https://doi.org/10.1038/s41598-024-61515-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.

Keywords