BMC Cancer (Jul 2024)

Investigating the effects of artificial intelligence on the personalization of breast cancer management: a systematic study

  • Solmaz Sohrabei,
  • Hamid Moghaddasi,
  • Azamossadat Hosseini,
  • Seyed Jafar Ehsanzadeh

DOI
https://doi.org/10.1186/s12885-024-12575-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Providing appropriate specialized treatment to the right patient at the right time is considered necessary in cancer management. Targeted therapy tailored to the genetic changes of each breast cancer patient is a desirable feature of precision oncology, which can not only reduce disease progression but also potentially increase patient survival. The use of artificial intelligence alongside precision oncology can help physicians by identifying and selecting more effective treatment factors for patients. Method A systematic review was conducted using the PubMed, Embase, Scopus, and Web of Science databases in September 2023. We performed the search strategy with keywords, namely: Breast Cancer, Artificial intelligence, and precision Oncology along with their synonyms in the article titles. Descriptive, qualitative, review, and non-English studies were excluded. The quality assessment of the articles and evaluation of bias were determined based on the SJR journal and JBI indices, as well as the PRISMA2020 guideline. Results Forty-six studies were selected that focused on personalized breast cancer management using artificial intelligence models. Seventeen studies using various deep learning methods achieved a satisfactory outcome in predicting treatment response and prognosis, contributing to personalized breast cancer management. Two studies utilizing neural networks and clustering provided acceptable indicators for predicting patient survival and categorizing breast tumors. One study employed transfer learning to predict treatment response. Twenty-six studies utilizing machine-learning methods demonstrated that these techniques can improve breast cancer classification, screening, diagnosis, and prognosis. The most frequent modeling techniques used were NB, SVM, RF, XGBoost, and Reinforcement Learning. The average area under the curve (AUC) for the models was 0.91. Moreover, the average values for accuracy, sensitivity, specificity, and precision were reported to be in the range of 90-96% for the models. Conclusion Artificial intelligence has proven to be effective in assisting physicians and researchers in managing breast cancer treatment by uncovering hidden patterns in complex omics and genetic data. Intelligent processing of omics data through protein and gene pattern classification and the utilization of deep neural patterns has the potential to significantly transform the field of complex disease management.

Keywords