PLoS ONE (Jan 2013)

Synchrotron-generated microbeam sensorimotor cortex transections induce seizure control without disruption of neurological functions.

  • Pantaleo Romanelli,
  • Erminia Fardone,
  • Giuseppe Battaglia,
  • Elke Bräuer-Krisch,
  • Yolanda Prezado,
  • Herwig Requardt,
  • Geraldine Le Duc,
  • Christian Nemoz,
  • David J Anschel,
  • Jenny Spiga,
  • Alberto Bravin

DOI
https://doi.org/10.1371/journal.pone.0053549
Journal volume & issue
Vol. 8, no. 1
p. e53549

Abstract

Read online

Synchrotron-generated X-ray microplanar beams (microbeams) are characterized by the ability to deliver extremely high doses of radiation to spatially restricted volumes of tissue. Minimal dose spreading outside the beam path provides an exceptional degree of protection from radio-induced damage to the neurons and glia adjacent to the microscopic slices of tissue irradiated. The preservation of cortical architecture following high-dose microbeam irradiation and the ability to induce non-invasively the equivalent of a surgical cut over the cortex is of great interest for the development of novel experimental models in neurobiology and new treatment avenues for a variety of brain disorders. Microbeams (size 100 µm/600 µm, center-to-center distance of 400 µm/1200 µm, peak entrance doses of 360-240 Gy/150-100 Gy) delivered to the sensorimotor cortex of six 2-month-old naïve rats generated histologically evident cortical transections, without modifying motor behavior and weight gain up to 7 months. Microbeam transections of the sensorimotor cortex dramatically reduced convulsive seizure duration in a further group of 12 rats receiving local infusion of kainic acid. No subsequent neurological deficit was associated with the treatment. These data provide a novel tool to study the functions of the cortex and pave the way for the development of new therapeutic strategies for epilepsy and other neurological diseases.