Marine Drugs (Apr 2022)

Discovery of Anti-MRSA Secondary Metabolites from a Marine-Derived Fungus <i>Aspergillus fumigatus</i>

  • Rui Zhang,
  • Haifeng Wang,
  • Baosong Chen,
  • Huanqin Dai,
  • Jingzu Sun,
  • Junjie Han,
  • Hongwei Liu

DOI
https://doi.org/10.3390/md20050302
Journal volume & issue
Vol. 20, no. 5
p. 302

Abstract

Read online

Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A–C (1–3), 12β, 13β-hydroxy-asperfumigatin (4), 2-epi-tryptoquivaline F (17) and penibenzophenone E (37), and thirty-nine known ones were isolated from the marine-derived fungus Aspergillus fumigatus H22. The structures and the absolute configurations of the new compounds were unambiguously assigned by spectroscopic data, mass spectrometry (MS), electronic circular dichroism (ECD) spectroscopic analyses, quantum NMR and ECD calculations, and chemical derivatizations. Bioactivity screening indicated that nearly half of the compounds exhibit antibacterial activity, especially compounds 8 and 11, and 33–38 showed excellent antimicrobial activities against MRSA, with minimum inhibitory concentration (MIC) values ranging from 1.25 to 2.5 μM. In addition, compound 8 showed moderate inhibitory activity against Mycobacterium bovis (MIC: 25 μM), compound 10 showed moderate inhibitory activity against Candida albicans (MIC: 50 μM), and compound 13 showed strong inhibitory activity against the hatching of a Caenorhabditis elegans egg (IC50: 2.5 μM).

Keywords